Class 的基本语法
类的由来 #
JavaScript 语言中,生成实例对象的传统方法是通过构造函数。下面是一个例子。
function Point(x, y) {
this.x = x;
this.y = y;
}
Point.prototype.toString = function () {
return '(' + this.x + ', ' + this.y + ')';
};
var p = new Point(1, 2);
上面这种写法跟传统的面向对象语言(比如 C++ 和 Java)差异很大,很容易让新学习这门语言的程序员感到困惑。
ES6 提供了更接近传统语言的写法,引入了 Class(类)这个概念,作为对象的模板。通过class
关键字,可以定义类。
基本上,ES6 的class
可以看作只是一个语法糖,它的绝大部分功能,ES5 都可以做到,新的class
写法只是让对象原型的写法更加清晰、更像面向对象编程的语法而已。上面的代码用 ES6 的class
改写,就是下面这样。
class Point {
constructor(x, y) {
this.x = x;
this.y = y;
}
toString() {
return '(' + this.x + ', ' + this.y + ')';
}
}
上面代码定义了一个“类”,可以看到里面有一个constructor()
方法,这就是构造方法,而this
关键字则代表实例对象。这种新的 Class 写法,本质上与本章开头的 ES5 的构造函数Point
是一致的。
Point
类除了构造方法,还定义了一个toString()
方法。注意,定义toString()
方法的时候,前面不需要加上function
这个关键字,直接把函数定义放进去了就可以了。另外,方法与方法之间不需要逗号分隔,加了会报错。
ES6 的类,完全可以看作构造函数的另一种写法。
class Point {
// ...
}
typeof Point // "function"
Point === Point.prototype.constructor // true
上面代码表明,类的数据类型就是函数,类本身就指向构造函数。
使用的时候,也是直接对类使用new
命令,跟构造函数的用法完全一致。
class Bar {
doStuff() {
console.log('stuff');
}
}
const b = new Bar();
b.doStuff() // "stuff"
构造函数的prototype
属性,在 ES6 的“类”上面继续存在。事实上,类的所有方法都定义在类的prototype
属性上面。
class Point {
constructor() {
// ...
}
toString() {
// ...
}
toValue() {
// ...
}
}
// 等同于
Point.prototype = {
constructor() {},
toString() {},
toValue() {},
};
上面代码中,constructor()
、toString()
、toValue()
这三个方法,其实都是定义在Point.prototype
上面。
因此,在类的实例上面调用方法,其实就是调用原型上的方法。
class B {}
const b = new B();
b.constructor === B.prototype.constructor // true
上面代码中,b
是B
类的实例,它的constructor()
方法就是B
类原型的constructor()
方法。
由于类的方法都定义在prototype
对象上面,所以类的新方法可以添加在prototype
对象上面。Object.assign()
方法可以很方便地一次向类添加多个方法。
class Point {
constructor(){
// ...
}
}
Object.assign(Point.prototype, {
toString(){},
toValue(){}
});
prototype
对象的constructor
属性,直接指向“类”的本身,这与 ES5 的行为是一致的。
Point.prototype.constructor === Point // true
另外,类的内部所有定义的方法,都是不可枚举的(non-enumerable)。
class Point {
constructor(x, y) {
// ...
}
toString() {
// ...
}
}
Object.keys(Point.prototype)
// []
Object.getOwnPropertyNames(Point.prototype)
// ["constructor","toString"]
上面代码中,toString()
方法是Point
类内部定义的方法,它是不可枚举的。这一点与 ES5 的行为不一致。
var Point = function (x, y) {
// ...
};
Point.prototype.toString = function () {
// ...
};
Object.keys(Point.prototype)
// ["toString"]
Object.getOwnPropertyNames(Point.prototype)
// ["constructor","toString"]
上面代码采用 ES5 的写法,toString()
方法就是可枚举的。
constructor() 方法 #
constructor()
方法是类的默认方法,通过new
命令生成对象实例时,自动调用该方法。一个类必须有constructor()
方法,如果没有显式定义,一个空的constructor()
方法会被默认添加。
class Point {
}
// 等同于
class Point {
constructor() {}
}
上面代码中,定义了一个空的类Point
,JavaScript 引擎会自动为它添加一个空的constructor()
方法。
constructor()
方法默认返回实例对象(即this
),完全可以指定返回另外一个对象。
class Foo {
constructor() {
return Object.create(null);
}
}
new Foo() instanceof Foo
// false
上面代码中,constructor()
函数返回一个全新的对象,结果导致实例对象不是Foo
类的实例。
类必须使用new
调用,否则会报错。这是它跟普通构造函数的一个主要区别,后者不用new
也可以执行。
class Foo {
constructor() {
return Object.create(null);
}
}
Foo()
// TypeError: Class constructor Foo cannot be invoked without 'new'
类的实例 #
生成类的实例的写法,与 ES5 完全一样,也是使用new
命令。前面说过,如果忘记加上new
,像函数那样调用Class()
,将会报错。
class Point {
// ...
}
// 报错
var point = Point(2, 3);
// 正确
var point = new Point(2, 3);
类的属性和方法,除非显式定义在其本身(即定义在this
对象上),否则都是定义在原型上(即定义在class
上)。
class Point {
constructor(x, y) {
this.x = x;
this.y = y;
}
toString() {
return '(' + this.x + ', ' + this.y + ')';
}
}
var point = new Point(2, 3);
point.toString() // (2, 3)
point.hasOwnProperty('x') // true
point.hasOwnProperty('y') // true
point.hasOwnProperty('toString') // false
point.__proto__.hasOwnProperty('toString') // true
上面代码中,x
和y
都是实例对象point
自身的属性(因为定义在this
对象上),所以hasOwnProperty()
方法返回true
,而toString()
是原型对象的属性(因为定义在Point
类上),所以hasOwnProperty()
方法返回false
。这些都与 ES5 的行为保持一致。
与 ES5 一样,类的所有实例共享一个原型对象。
var p1 = new Point(2,3);
var p2 = new Point(3,2);
p1.__proto__ === p2.__proto__
//true
上面代码中,p1
和p2
都是Point
的实例,它们的原型都是Point.prototype
,所以__proto__
属性是相等的。
这也意味着,可以通过实例的__proto__
属性为“类”添加方法。
__proto__
并不是语言本身的特性,这是各大厂商具体实现时添加的私有属性,虽然目前很多现代浏览器的 JS 引擎中都提供了这个私有属性,但依旧不建议在生产中使用该属性,避免对环境产生依赖。生产环境中,我们可以使用Object.getPrototypeOf()
方法来获取实例对象的原型,然后再来为原型添加方法/属性。
var p1 = new Point(2,3);
var p2 = new Point(3,2);
p1.__proto__.printName = function () { return 'Oops' };
p1.printName() // "Oops"
p2.printName() // "Oops"
var p3 = new Point(4,2);
p3.printName() // "Oops"
上面代码在p1
的原型上添加了一个printName()
方法,由于p1
的原型就是p2
的原型,因此p2
也可以调用这个方法。而且,此后新建的实例p3
也可以调用这个方法。这意味着,使用实例的__proto__
属性改写原型,必须相当谨慎,不推荐使用,因为这会改变“类”的原始定义,影响到所有实例。
实例属性的新写法 #
ES2022 为类的实例属性,又规定了一种新写法。实例属性现在除了可以定义在constructor()
方法里面的this
上面,也可以定义在类内部的最顶层。
// 原来的写法
class IncreasingCounter {
constructor() {
this._count = 0;
}
get value() {
console.log('Getting the current value!');
return this._count;
}
increment() {
this._count++;
}
}
上面示例中,实例属性_count
定义在constructor()
方法里面的this
上面。
现在的新写法是,这个属性也可以定义在类的最顶层,其他都不变。
class IncreasingCounter {
_count = 0;
get value() {
console.log('Getting the current value!');
return this._count;
}
increment() {
this._count++;
}
}
上面代码中,实例属性_count
与取值函数value()
和increment()
方法,处于同一个层级。这时,不需要在实例属性前面加上this
。
注意,新写法定义的属性是实例对象自身的属性,而不是定义在实例对象的原型上面。
这种新写法的好处是,所有实例对象自身的属性都定义在类的头部,看上去比较整齐,一眼就能看出这个类有哪些实例属性。
class foo {
bar = 'hello';
baz = 'world';
constructor() {
// ...
}
}
上面的代码,一眼就能看出,foo
类有两个实例属性,一目了然。另外,写起来也比较简洁。
取值函数(getter)和存值函数(setter) #
与 ES5 一样,在“类”的内部可以使用get
和set
关键字,对某个属性设置存值函数和取值函数,拦截该属性的存取行为。
class MyClass {
constructor() {
// ...
}
get prop() {
return 'getter';
}
set prop(value) {
console.log('setter: '+value);
}
}
let inst = new MyClass();
inst.prop = 123;
// setter: 123
inst.prop
// 'getter'
上面代码中,prop
属性有对应的存值函数和取值函数,因此赋值和读取行为都被自定义了。
存值函数和取值函数是设置在属性的 Descriptor 对象上的。
class CustomHTMLElement {
constructor(element) {
this.element = element;
}
get html() {
return this.element.innerHTML;
}
set html(value) {
this.element.innerHTML = value;
}
}
var descriptor = Object.getOwnPropertyDescriptor(
CustomHTMLElement.prototype, "html"
);
"get" in descriptor // true
"set" in descriptor // true
上面代码中,存值函数和取值函数是定义在html
属性的描述对象上面,这与 ES5 完全一致。
属性表达式 #
类的属性名,可以采用表达式。
let methodName = 'getArea';
class Square {
constructor(length) {
// ...
}
[methodName]() {
// ...
}
}
上面代码中,Square
类的方法名getArea
,是从表达式得到的。
Class 表达式 #
与函数一样,类也可以使用表达式的形式定义。
const MyClass = class Me {
getClassName() {
return Me.name;
}
};
上面代码使用表达式定义了一个类。需要注意的是,这个类的名字是Me
,但是Me
只在 Class 的内部可用,指代当前类。在 Class 外部,这个类只能用MyClass
引用。
let inst = new MyClass();
inst.getClassName() // Me
Me.name // ReferenceError: Me is not defined
上面代码表示,Me
只在 Class 内部有定义。
如果类的内部没用到的话,可以省略Me
,也就是可以写成下面的形式。
const MyClass = class { /* ... */ };
采用 Class 表达式,可以写出立即执行的 Class。
let person = new class {
constructor(name) {
this.name = name;
}
sayName() {
console.log(this.name);
}
}('张三');
person.sayName(); // "张三"
上面代码中,person
是一个立即执行的类的实例。
静态方法 #
类相当于实例的原型,所有在类中定义的方法,都会被实例继承。如果在一个方法前,加上static
关键字,就表示该方法不会被实例继承,而是直接通过类来调用,这就称为“静态方法”。
class Foo {
static classMethod() {
return 'hello';
}
}
Foo.classMethod() // 'hello'
var foo = new Foo();
foo.classMethod()
// TypeError: foo.classMethod is not a function
上面代码中,Foo
类的classMethod
方法前有static
关键字,表明该方法是一个静态方法,可以直接在Foo
类上调用(Foo.classMethod()
),而不是在Foo
类的实例上调用。如果在实例上调用静态方法,会抛出一个错误,表示不存在该方法。
注意,如果静态方法包含this
关键字,这个this
指的是类,而不是实例。
class Foo {
static bar() {
this.baz();
}
static baz() {
console.log('hello');
}
baz() {
console.log('world');
}
}
Foo.bar() // hello
上面代码中,静态方法bar
调用了this.baz
,这里的this
指的是Foo
类,而不是Foo
的实例,等同于调用Foo.baz
。另外,从这个例子还可以看出,静态方法可以与非静态方法重名。
父类的静态方法,可以被子类继承。
class Foo {
static classMethod() {
return 'hello';
}
}
class Bar extends Foo {
}
Bar.classMethod() // 'hello'
上面代码中,父类Foo
有一个静态方法,子类Bar
可以调用这个方法。
静态方法也是可以从super
对象上调用的。
class Foo {
static classMethod() {
return 'hello';
}
}
class Bar extends Foo {
static classMethod() {
return super.classMethod() + ', too';
}
}
Bar.classMethod() // "hello, too"
静态属性 #
静态属性指的是 Class 本身的属性,即Class.propName
,而不是定义在实例对象(this
)上的属性。
class Foo {
}
Foo.prop = 1;
Foo.prop // 1
上面的写法为Foo
类定义了一个静态属性prop
。
目前,只有这种写法可行,因为 ES6 明确规定,Class 内部只有静态方法,没有静态属性。现在有一个提案提供了类的静态属性,写法是在实例属性的前面,加上static
关键字。
class MyClass {
static myStaticProp = 42;
constructor() {
console.log(MyClass.myStaticProp); // 42
}
}
这个新写法大大方便了静态属性的表达。
// 老写法
class Foo {
// ...
}
Foo.prop = 1;
// 新写法
class Foo {
static prop = 1;
}
上面代码中,老写法的静态属性定义在类的外部。整个类生成以后,再生成静态属性。这样让人很容易忽略这个静态属性,也不符合相关代码应该放在一起的代码组织原则。另外,新写法是显式声明(declarative),而不是赋值处理,语义更好。
私有方法和私有属性 #
早期解决方案 #
私有方法和私有属性,是只能在类的内部访问的方法和属性,外部不能访问。这是常见需求,有利于代码的封装,但早期的 ES6 不提供,只能通过变通方法模拟实现。
一种做法是在命名上加以区别。
class Widget {
// 公有方法
foo (baz) {
this._bar(baz);
}
// 私有方法
_bar(baz) {
return this.snaf = baz;
}
// ...
}
上面代码中,_bar()
方法前面的下划线,表示这是一个只限于内部使用的私有方法。但是,这种命名是不保险的,在类的外部,还是可以调用到这个方法。
另一种方法就是索性将私有方法移出类,因为类内部的所有方法都是对外可见的。
class Widget {
foo (baz) {
bar.call(this, baz);
}
// ...
}
function bar(baz) {
return this.snaf = baz;
}
上面代码中,foo
是公开方法,内部调用了bar.call(this, baz)
。这使得bar()
实际上成为了当前类的私有方法。
还有一种方法是利用Symbol
值的唯一性,将私有方法的名字命名为一个Symbol
值。
const bar = Symbol('bar');
const snaf = Symbol('snaf');
export default class myClass{
// 公有方法
foo(baz) {
this[bar](baz);
}
// 私有方法
[bar](baz) {
return this[snaf] = baz;
}
// ...
};
上面代码中,bar
和snaf
都是Symbol
值,一般情况下无法获取到它们,因此达到了私有方法和私有属性的效果。但是也不是绝对不行,Reflect.ownKeys()
依然可以拿到它们。
const inst = new myClass();
Reflect.ownKeys(myClass.prototype)
// [ 'constructor', 'foo', Symbol(bar) ]
上面代码中,Symbol 值的属性名依然可以从类的外部拿到。
私有属性的正式写法 #
ES2022正式为class
添加了私有属性,方法是在属性名之前使用#
表示。
class IncreasingCounter {
#count = 0;
get value() {
console.log('Getting the current value!');
return this.#count;
}
increment() {
this.#count++;
}
}
上面代码中,#count
就是私有属性,只能在类的内部使用(this.#count
)。如果在类的外部使用,就会报错。
const counter = new IncreasingCounter();
counter.#count // 报错
counter.#count = 42 // 报错
上面示例中,在类的外部,读取或写入私有属性#count
,都会报错。
注意,从 Chrome 111 开始,开发者工具里面可以读写私有属性,不会报错,原因是 Chrome 团队认为这样方便调试。
另外,不管在类的内部或外部,读取一个不存在的私有属性,也都会报错。这跟公开属性的行为完全不同,如果读取一个不存在的公开属性,不会报错,只会返回undefined
。
class IncreasingCounter {
#count = 0;
get value() {
console.log('Getting the current value!');
return this.#myCount; // 报错
}
increment() {
this.#count++;
}
}
const counter = new IncreasingCounter();
counter.#myCount // 报错
上面示例中,#myCount
是一个不存在的私有属性,不管在函数内部或外部,读取该属性都会导致报错。
注意,私有属性的属性名必须包括#
,如果不带#
,会被当作另一个属性。
class Point {
#x;
constructor(x = 0) {
this.#x = +x;
}
get x() {
return this.#x;
}
set x(value) {
this.#x = +value;
}
}
上面代码中,#x
就是私有属性,在Point
类之外是读取不到这个属性的。由于井号#
是属性名的一部分,使用时必须带有#
一起使用,所以#x
和x
是两个不同的属性。
这种写法不仅可以写私有属性,还可以用来写私有方法。
class Foo {
#a;
#b;
constructor(a, b) {
this.#a = a;
this.#b = b;
}
#sum() {
return this.#a + this.#b;
}
printSum() {
console.log(this.#sum());
}
}
上面示例中,#sum()
就是一个私有方法。
另外,私有属性也可以设置 getter 和 setter 方法。
class Counter {
#xValue = 0;
constructor() {
console.log(this.#x);
}
get #x() { return this.#xValue; }
set #x(value) {
this.#xValue = value;
}
}
上面代码中,#x
是一个私有属性,它的读写都通过get #x()
和set #x()
操作另一个私有属性#xValue
来完成。
私有属性不限于从this
引用,只要是在类的内部,实例也可以引用私有属性。
class Foo {
#privateValue = 42;
static getPrivateValue(foo) {
return foo.#privateValue;
}
}
Foo.getPrivateValue(new Foo()); // 42
上面代码允许从实例foo
上面引用私有属性。
私有属性和私有方法前面,也可以加上static
关键字,表示这是一个静态的私有属性或私有方法。
class FakeMath {
static PI = 22 / 7;
static #totallyRandomNumber = 4;
static #computeRandomNumber() {
return FakeMath.#totallyRandomNumber;
}
static random() {
console.log('I heard you like random numbers…')
return FakeMath.#computeRandomNumber();
}
}
FakeMath.PI // 3.142857142857143
FakeMath.random()
// I heard you like random numbers…
// 4
FakeMath.#totallyRandomNumber // 报错
FakeMath.#computeRandomNumber() // 报错
上面代码中,#totallyRandomNumber
是私有属性,#computeRandomNumber()
是私有方法,只能在FakeMath
这个类的内部调用,外部调用就会报错。
in 运算符 #
前面说过,直接访问某个类不存在的私有属性会报错,但是访问不存在的公开属性不会报错。这个特性可以用来判断,某个对象是否为类的实例。
class C {
#brand;
static isC(obj) {
try {
obj.#brand;
return true;
} catch {
return false;
}
}
}
上面示例中,类C
的静态方法isC()
就用来判断,某个对象是否为C
的实例。它采用的方法就是,访问该对象的私有属性#brand
。如果不报错,就会返回true
;如果报错,就说明该对象不是当前类的实例,从而catch
部分返回false
。
因此,try...catch
结构可以用来判断某个私有属性是否存在。但是,这样的写法很麻烦,代码可读性很差,ES2022 改进了in
运算符,使它也可以用来判断私有属性。
class C {
#brand;
static isC(obj) {
if (#brand in obj) {
// 私有属性 #brand 存在
return true;
} else {
// 私有属性 #foo 不存在
return false;
}
}
}
上面示例中,in
运算符判断某个对象是否有私有属性#brand
。它不会报错,而是返回一个布尔值。
这种用法的in
,也可以跟this
一起配合使用。
class A {
#foo = 0;
m() {
console.log(#foo in this); // true
}
}
注意,判断私有属性时,in
只能用在类的内部。另外,判断所针对的私有属性,一定要先声明,否则会报错。
class A {
m() {
console.log(#foo in this); // 报错
}
}
上面示例中,私有属性#foo
没有声明,就直接用于in
运算符的判断,导致报错。
静态块 #
静态属性的一个问题是,如果它有初始化逻辑,这个逻辑要么写在类的外部,要么写在constructor()
方法里面。
class C {
static x = 234;
static y;
static z;
}
try {
const obj = doSomethingWith(C.x);
C.y = obj.y
C.z = obj.z;
} catch {
C.y = ...;
C.z = ...;
}
上面示例中,静态属性y
和z
的值依赖于静态属性x
的运算结果,这段初始化逻辑写在类的外部(上例的try...catch
代码块)。另一种方法是写到类的constructor()
方法里面。这两种方法都不是很理想,前者是将类的内部逻辑写到了外部,后者则是每次新建实例都会运行一次。
为了解决这个问题,ES2022 引入了静态块(static block),允许在类的内部设置一个代码块,在类生成时运行且只运行一次,主要作用是对静态属性进行初始化。以后,新建类的实例时,这个块就不运行了。
class C {
static x = ...;
static y;
static z;
static {
try {
const obj = doSomethingWith(this.x);
this.y = obj.y;
this.z = obj.z;
}
catch {
this.y = ...;
this.z = ...;
}
}
}
上面代码中,类的内部有一个 static 代码块,这就是静态块。它的好处是将静态属性y
和z
的初始化逻辑,写入了类的内部,而且只运行一次。
每个类允许有多个静态块,每个静态块中只能访问之前声明的静态属性。另外,静态块的内部不能有return
语句。
静态块内部可以使用类名或this
,指代当前类。
class C {
static x = 1;
static {
this.x; // 1
// 或者
C.x; // 1
}
}
上面示例中,this.x
和C.x
都能获取静态属性x
。
除了静态属性的初始化,静态块还有一个作用,就是将私有属性与类的外部代码分享。
let getX;
export class C {
#x = 1;
static {
getX = obj => obj.#x;
}
}
console.log(getX(new C())); // 1
上面示例中,#x
是类的私有属性,如果类外部的getX()
方法希望获取这个属性,以前是要写在类的constructor()
方法里面,这样的话,每次新建实例都会定义一次getX()
方法。现在可以写在静态块里面,这样的话,只在类生成时定义一次。
类的注意点 #
严格模式 #
类和模块的内部,默认就是严格模式,所以不需要使用use strict
指定运行模式。只要你的代码写在类或模块之中,就只有严格模式可用。考虑到未来所有的代码,其实都是运行在模块之中,所以 ES6 实际上把整个语言升级到了严格模式。
不存在提升 #
类不存在变量提升(hoist),这一点与 ES5 完全不同。
new Foo(); // ReferenceError
class Foo {}
上面代码中,Foo
类使用在前,定义在后,这样会报错,因为 ES6 不会把类的声明提升到代码头部。这种规定的原因与下文要提到的继承有关,必须保证子类在父类之后定义。
{
let Foo = class {};
class Bar extends Foo {
}
}
上面的代码不会报错,因为Bar
继承Foo
的时候,Foo
已经有定义了。但是,如果存在class
的提升,上面代码就会报错,因为class
会被提升到代码头部,而定义Foo
的那一行没有提升,导致Bar
继承Foo
的时候,Foo
还没有定义。
name 属性 #
由于本质上,ES6 的类只是 ES5 的构造函数的一层包装,所以函数的许多特性都被Class
继承,包括name
属性。
class Point {}
Point.name // "Point"
name
属性总是返回紧跟在class
关键字后面的类名。
Generator 方法 #
如果某个方法之前加上星号(*
),就表示该方法是一个 Generator 函数。
class Foo {
constructor(...args) {
this.args = args;
}
* [Symbol.iterator]() {
for (let arg of this.args) {
yield arg;
}
}
}
for (let x of new Foo('hello', 'world')) {
console.log(x);
}
// hello
// world
上面代码中,Foo
类的Symbol.iterator
方法前有一个星号,表示该方法是一个 Generator 函数。Symbol.iterator
方法返回一个Foo
类的默认遍历器,for...of
循环会自动调用这个遍历器。
this 的指向 #
类的方法内部如果含有this
,它默认指向类的实例。但是,必须非常小心,一旦单独使用该方法,很可能报错。
class Logger {
printName(name = 'there') {
this.print(`Hello ${name}`);
}
print(text) {
console.log(text);
}
}
const logger = new Logger();
const { printName } = logger;
printName(); // TypeError: Cannot read property 'print' of undefined
上面代码中,printName
方法中的this
,默认指向Logger
类的实例。但是,如果将这个方法提取出来单独使用,this
会指向该方法运行时所在的环境(由于 class 内部是严格模式,所以 this 实际指向的是undefined
),从而导致找不到print
方法而报错。
一个比较简单的解决方法是,在构造方法中绑定this
,这样就不会找不到print
方法了。
class Logger {
constructor() {
this.printName = this.printName.bind(this);
}
// ...
}
另一种解决方法是使用箭头函数。
class Obj {
constructor() {
this.getThis = () => this;
}
}
const myObj = new Obj();
myObj.getThis() === myObj // true
箭头函数内部的this
总是指向定义时所在的对象。上面代码中,箭头函数位于构造函数内部,它的定义生效的时候,是在构造函数执行的时候。这时,箭头函数所在的运行环境,肯定是实例对象,所以this
会总是指向实例对象。
还有一种解决方法是使用Proxy
,获取方法的时候,自动绑定this
。
function selfish (target) {
const cache = new WeakMap();
const handler = {
get (target, key) {
const value = Reflect.get(target, key);
if (typeof value !== 'function') {
return value;
}
if (!cache.has(value)) {
cache.set(value, value.bind(target));
}
return cache.get(value);
}
};
const proxy = new Proxy(target, handler);
return proxy;
}
const logger = selfish(new Logger());
new.target 属性 #
new
是从构造函数生成实例对象的命令。ES6 为new
命令引入了一个new.target
属性,该属性一般用在构造函数之中,返回new
命令作用于的那个构造函数。如果构造函数不是通过new
命令或Reflect.construct()
调用的,new.target
会返回undefined
,因此这个属性可以用来确定构造函数是怎么调用的。
function Person(name) {
if (new.target !== undefined) {
this.name = name;
} else {
throw new Error('必须使用 new 命令生成实例');
}
}
// 另一种写法
function Person(name) {
if (new.target === Person) {
this.name = name;
} else {
throw new Error('必须使用 new 命令生成实例');
}
}
var person = new Person('张三'); // 正确
var notAPerson = Person.call(person, '张三'); // 报错
上面代码确保构造函数只能通过new
命令调用。
Class 内部调用new.target
,返回当前 Class。
class Rectangle {
constructor(length, width) {
console.log(new.target === Rectangle);
this.length = length;
this.width = width;
}
}
var obj = new Rectangle(3, 4); // 输出 true
需要注意的是,子类继承父类时,new.target
会返回子类。
class Rectangle {
constructor(length, width) {
console.log(new.target === Rectangle);
// ...
}
}
class Square extends Rectangle {
constructor(length, width) {
super(length, width);
}
}
var obj = new Square(3); // 输出 false
上面代码中,new.target
会返回子类。
利用这个特点,可以写出不能独立使用、必须继承后才能使用的类。
class Shape {
constructor() {
if (new.target === Shape) {
throw new Error('本类不能实例化');
}
}
}
class Rectangle extends Shape {
constructor(length, width) {
super();
// ...
}
}
var x = new Shape(); // 报错
var y = new Rectangle(3, 4); // 正确
上面代码中,Shape
类不能被实例化,只能用于继承。
注意,在函数外部,使用new.target
会报错。